Как из дроби сделать смешанное число

Дробь — это рациональное число, которое представляет собой одну или несколько частей единицы. Наряду с натуральными числами дроби широко используются в бытовых расчетах и реальной жизни.

История возникновения

Нужда в дробных числах возникла у людей еще до начала цивилизации. Разделение мяса и шкур убитых животных между участниками охоты иногда приводило к серьезным проблемам, если количество добычи не совпадало с количеством охотников или не было кратным ему. Проблемы с разделением ресурсов привели первобытного человека к понятию дробного числа.

С зарождением цивилизации людям потребовалось вычислять все больше и больше параметров при строительстве жилья и организации сельского хозяйства. Необходимость измерять длины, объемы и площади, которые далеко не всегда можно выразить целым числом, привела к активному использованию дробей в жизни древних людей. Впервые дроби начали использоваться в Древнем Вавилоне и Древнем Египте, причем египтяне применяли дроби исключительно с единицей в числителе. Позднее знание о дробях распространилось по всему миру и появилось на Руси только в VIII веке.

Проблема измерений всегда остро стояла перед человечеством. Если для счета предметов хватает однозначных натуральных чисел, то для измерения параметров их недостаточно. Небольшие ошибки в инженерных расчетах, оперирующих натуральными числами, нередко приводили к разрушению возведенных конструкций. Именно тогда в зодчестве начали активно использовать десятичные дроби для более точного выражения величин. Однако проблема точности вычислений до сих пор актуальна, так как точность можно повышать до бесконечности.

Определение термина

Дробь — это число, состоящее из нескольких долей единицы. Записываются такие числа в виде обыкновенной или десятичной дроби. Обыкновенная дробь имеет общий вид m/n, где n ≠ 0. Рациональные числа имеют две формы записи: через горизонтальную черту, которая называется «винкулум» или через наклонную — «солидус». В нашей статье мы будем использовать солидус для удобства записи.

Если m < n, то такое число является правильной дробью (например, 3/5, 8/10 или 35/100). Если m > n, то такая дробь носит название неправильной (к примеру, 3/2, 8/3 или 54/21). Любое целое число легко записать в форме дроби, и в общем виде это выглядит как m/1. Если же величина записывается в виде комбинации целого числа и правильной дроби, то она носит названия смешанного дробного числа. Такие числа можно преобразовывать из одного вида в другой.

Перевод дробей из одного типа в другой

При решении примеров по арифметике иногда возникает потребность преобразовать неправильную дробь в смешанную или наоборот. Это легко сделать, если использовать следующие алгоритмы. Для преобразования «смешанная — неправильная» нужно:

  • целую часть смешанного числа умножить на знаменатель дроби, после чего сложить результат с числителем;
  • знаменатель оставить без изменения.

Преобразуем смешанную дробь 4 и 2/3 в неправильную. Умножим целое 4 на знаменатель 3 и результат 12 добавим к числителю. В итоге получаем 14. Знаменатель оставляем без изменений и записываем неправильную дробь 14/3.

Для трансформации «неправильная — смешанная» используется следующий алгоритм:

  • числитель делим на знаменатель и полученное число принимаем за целую часть смешанной дроби;
  • остаток от деления записываем в числитель обыкновенной дроби, а знаменатель оставляем тем же.

На примере это выглядит так. Для дроби 22/7 разделим 22 на 7, получим 3 и 1 в остатке. После это занесем остаток в числитель правильной дроби и запишем 3 и 1/7.

Если для решения заданий по арифметике требуется перевести целое число в дробь, то в знаменатель просто пишут единицу, а затем приводят дроби к общему знаменателю.

Небольшие дроби легко вручную переводить из одного вида в другой. Однако если требуется выразить в виде неправильной дроби выражение вида 135 и 784/623, то проще воспользоваться нашим онлайн-калькулятором. Инструмент мгновенно переводит смешанные дроби в неправильные и наоборот. Для этого в меню программы следует выбрать направление преобразования и ввести нужное число. Достаточно одного клика мышкой для получения мгновенного результата. Например, при помощи калькулятора легко подсчитать, что 135 и 784/623 тождественно равно неправильной дроби 84889/623.

Заключение

Дробные числа — неотъемлемая часть жизни. Люди пользуются дробями даже в таких простых ситуациях, как разрезание пиццы или подбор пропорций для приготовления коктейля. Умение преобразовывать числа из одной формы в другую несомненно пригодится даже в простых бытовых расчетах, не говоря уже о школьных задачах и профессиональных вычислениях.

Смешанное число — это сумма натурального числа и правильной дробия, записанная без знака «+«.

Пример

213 = 2 +13; 325 = 3 +25; 577 = 5 +1313;

Приведение смешанного числа в виде неправильной дроби

Чтобы смешанную дробь привести к неправильной, надо умножить целую часть на знаменатель и добавить к полученному результату числитель. image

Пример image Наглядный пример

Приведение неправильной дроби в виде смешанного числа

Чтобы неправильную дробь привести к смешанной, нужно числитель поделить на знаменатель.

Пример Наглядный пример

Огромный блок математики посвящен работе с дробями или нецелыми числами. С ними очень часто встречаются и в жизни, поэтому знать, как работать с такими цифрами важно для любого человека. Математика – это наука, в которой ученик начинает с познания простых вещей и действий, а затем переходит к более сложным….

Знание и умение работать с подобными цифрами облегчит ему в дальнейшем работу с логарифмами, рациональными показателями и интегралами. С такими числами можно делать все то же самое, что и с обыкновенными: складывать дроби, делить, вычитать и умножать. Кроме этого, их можно сокращать. Работать с дробями просто, главное – это знать основные правила и методы их вычисления.

Содержание

Основные понятия

Для того, чтобы понять, что это за значение такое, необходимо представить некий целый предмет. Допустим, что есть торт, который порезали на несколько одинаковых или равных кусков. Каждый кусочек будет называться долей.

Важно! В случае с дробями, есть некое целое число, которое состоит из равных долей – отдельных меньших чисел.

Например, 10 состоит из 5 двоек, каждая двойка – это часть от десяти.

Доли имеют свои названия, в зависимости от их общего количества в целом числе: 10 может состоять из двух пятёрок или пяти двоек, в первом случае она будет называться  (одна вторая), а во втором  (одна пятая). Следует помнить, что   равняется половине числа,  (одна третья)  трети, а   (одна четвертая)  – четвертью. Их могут также изображать через черточку: ½, 1/3 или 1/5.

Цифру, написанную сверху горизонтальной линии или слева от наклонной, называют числителем – он показывает сколько долей взяли у целого числа, а цифра под линии или справа от нее – знаменатель, он показывает на сколько всего долей разделили. Например, торт разделили на 10 кусков и сразу отложили два из них для опоздавших гостей. Это будет 2/10 (две десятых), т.е. взяли 2 (числитель) куска от общих 10 (знаменатель).

Дроби

Какие бывают доли, что такое неправильная дробь, что такое обыкновенная дробь? На эти вопросы легко ответить:

  1. Обыкновенная – это такая, в котором числитель и знаменатель являются натуральными числами и записываются так:  или m/n,
  2. Правильная дробь – это такая, которая по своей величине меньше единицы, а числитель меньше знаменателя: 5/7 (пять седьмых), 3/5 (три пятых),
  3. Неправильная – это такая, которая больше или равна единице, а ее знаменатель меньше или равен числителю: 7/5 (семь пятых) или 19/3 (девятнадцать третьих),
  4. Смешанная – это состоящая из целого и доли: 2 (две целых три пятых) или 5 (пять целых шесть двенадцатых) .

Смешанная цифра всегда может трансформироваться в неправильную дробь и наоборот.

Главное свойство гласит: при умножении, а также деления делимого и делителя на одинаковый множитель, в целом величина дроби не изменится. Это свойство делает возможным все операции с дробями.

Как из неправильной дроби сделать правильную

Это интересно! Изучаем математику в игровой форме: как ребенку быстро выучить таблицу умножения

Как сократить?

Главное правило гласит, что долевую цифру можно сократить поделить ее числитель и знаменатель на одинаковый делитель (отличный от 0) так, чтобы получилась новая цифра с меньшими параметрами, но равная исходной по величине. Исходя из этого правила можно понять, что дроби бывают сократимые и несократимые.

Пример сокращения дробей: 8/24 сократим, поделив ее параметры на 2. Получим: 8:2=4 и 24:2=12. В результате, исходная цифра превратится в 4/12 . Можно повторить операцию, вновь поделив числа: 4:2=2 и 12:2=6. Получим 2/6. Еще раз повторим операцию: 2:2=1 и 6:2=3. В итоге получится несократимая цифра 1/3, поскольку ее параметры уже нельзя разделить на одинаковый делитель. Любое сократимое число можно привести к несократимому.

Важно ! Если делимое или делитель представлены выражением  (, вначале каждое из выражений надо умножить на один множитель и дробь превратить в простую, сократив на этот множитель выражение: .

Сокращать можно при умножении дробных выражений друг на друга: *. Сами по себе эти числа несократимые, но выполняя операцию умножения, можно сократить их по диагонали: * = =. Сокращать при умножении можно только крест-накрест: числитель первой со знаменателем второй, и наоборот.

Сокращать можно и смешанную цифру, т.е. целую часть и правильную дробь представить в виде неправильной. Для этого следует выполнить некоторые действия:

  1. Имея 5, преобразуем его в неправильную дробь. Для этого знаменатель перемножим с его целой частью и приплюсуем к полученной цифре числитель: 5*9+1=46,
  2. Сумма станет числителем неправильной доли, а его низ позаимствуем от первоначальной,
  3. В итоге получаем: .

Справедливо и обратное действие: из неправильной дроби сделать смешанную. Для этого рассмотрим обратное действие с :

  1. Разделим между собой верх и низ: 46:9=5,111111111111111,
  2. Целый результат деления станет полной цифрой, а бесконечный остаток – верхом доли,
  3. Знаменатель при этом останется неизмененным,
  4. Получаем 5.

Таким способом сокращать дроби при любых операциях возможно. Можно сокращать значения ее делимого и делителя при умножении их на одинаковый множитель, и превращая из смешанного числа в долю, и наоборот.

Сокращение дробей

Возможные действия

Все основные виды вычислений доступны при счете долей, как и с целыми цифрами: сложение, вычитание и прочие. Рассмотрим каждое действие по отдельности с примерами:

Сложение и вычитание

Складывать доли можно двумя путями, в зависимости от их делителя. Они бывают одинаковыми и разными. Рассмотрим пример складывания долей с одинаковыми делителями.

Для решения   +  необходимо по отдельности сложить делимое долей, а делитель не трогать: 1+1. Результатом станет цифра  , но поскольку она неправильная, то ее можно преобразовать в смешанную, разделив делимое на делитель: 2:2= 1. Неправильную долю всегда (!) следует приводить к правильной и несокращаемой, т. е. если ее делимое и делитель можно поделить на одинаковый множитель – это следует сделать в обязательно порядке.

В случае сложения долей с различными делителями, их необходимо изначально привести к одинаковому. Например, для решения :  необходимо:

  1. Найти наименьшее общее кратное (НОК) для делителей. Здесь у делителей 2 и 3 меньшее кратное – 6.
  2. НОК делят вначале на первый делитель, а затем на второй: 6:3=2 и 6:3=2. В данном случае полученные 2 и 3 – это первый и второй дополнительные множители.
  3. Каждое слагаемое первоначального примера умножить на найденные множители:  +  =  + .
  4. Далее складываем доли: .
  5. Преобразуем: 1.

Вычитание осуществляется точно так же: в случае с одинаковыми делителями их не трогаем, а числители последовательно вычитаем:   =  = . Если же знаменатели различные, то следует поступить, как и при сложении: найти НОК, множители, умножить доли, а затем вычесть уже доли с одинаковыми делителями.

Сложение дробей

Умножение и деление

При умножении необходимо последовательно перемножить их верх и низ между собой:   =  поскольку есть возможность сокращения на 6. В случае деления все несколько сложнее.

Для деления  следует:

  1. Умножить первый множитель на долю, обратную второй, т. е. ,
  2. Далее действует правило умножения: =  = , поскольку первоначальный результат можно сократить на 2.

Важно! Деление всегда можно заменить умножением, но только при соблюдении условия замены делителя на обратное ему число.

Перевод смешанного числа в неправильную дробь

Выделение целой части из неправильной дроби

Чтобы правильно решать подобные примеры, следует запомнить главное свойство и правила сокращения. Что касается операций, то важно знать, как правильно складывать и умножать при одинаковых и разных знаменателях, поскольку делятся и вычитаются они по одинаковому принципу.

Всякую неправильную дробь можно представить в виде натурального числа или суммы натурального числа и правильной дроби:

17  =  16 + 1  =  16  +  1  = 4 +  1  = 4 1 ;
4 4 4 4 4 4
20  = 4 .
5

Для преобразования неправильной дроби в смешанную дробь необходимо

  • поделить числитель дроби на ее знаменатель;
  • остаток от деления записать в числитель знаменатель оставить прежним;
  • результат от деления записать в качестве целой части.

Пример преобразования неправильной дроби в смешанное число

Пример 1. Преобразовать неправильную дробь 2554 в смешанное число.

Поделив 255 на 4 найдем целую часть и остаток от деления:

2 5 5 4
2 4 6 3
1 5
1 2
3

То есть целая часть равна 63, а остаток — 3, значит

255  = 63 3
4 4

Дроби Виды дробей (обыкновенная правильная, неправильная, смешанная, десятичная) Основное свойство дроби Сокращение дроби Приведение дробей к общему знаменателю Преобразование неправильной дроби в смешанное число Преобразование смешанного числа в неправильную дробь Сложение и вычитание дробей Умножение дробей Деление дробей Сравнение дробей Преобразование десятичной дроби в обыкновенную дробь Ответы (2) Знаете ответ на вопрос? Не уверены в ответе? Правильный ответ на вопрос 👍 «Как из дроби сделать смешанное число …» по предмету 📗 Математика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант — оцените ответы на похожие вопросы. Но если вдруг и это не помогло — задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ! Новые вопросы по математике Сумма двух чисел равна 13,75. Одно из слагаемых равно — 9 1 6 Ответы (1) Родник даёт в 24 мин бочку воды. Сколько бочек воды даёт родник в сутки? Ответы (2) Урвнение 52 — (3 у+4 у+4 у) : 38=50 Ответы (1) Учитель физкультуры приседайкин купил для школы 6 больших мячей и 7 маленьких сколько всего мячей купил учитель для школы? Ответы (2) Сколько Будет … х-12:18=? Ответы (2) Сколькими способами можно выбрать из 10 сотрудников фирмы ди- ректора, двух заместителей, трёх менеджеров и четырёх мастеров? Ответы (1) Автомобиль за 2 часа прощёл 160 км. Какое расстояние он прайдёт за 6 часов двигаясь с той же скоростю Ответы (2) Выполните действия 4,8 — (-0,8) Ответы (2) Сколько сейчас времени если прошедшая часть суток на 2 целых 1/2 больше этой? Ответы (1) Прямоугольник высота 1 ширина 6 его нужно разрезать на прямоугольники высотой 1 ширинай 3 и высотой1 и шириной 4 сколь существует способов Ответы (1)

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий